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Validity condition of separating dispersion of PCFs into

material dispersion and geometrical dispersion
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When using normalized dispersion method for the dispersion design of photonic crystal fibers (PCFs), it is
vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material
dispersion. However, the error induced by this way of calculation will deteriorate the final results. Taking
5 ps/(km·nm) and 5% as absolute error and relative error limits, respectively, the structure parameter
boundaries of PCFs about when separating total dispersion into geometrical and material components is
valid are provided for wavelength shorter than 1700 nm. By using these two criteria together, it is adequate
to evaluate the simulated dispersion of PCFs when normalized dispersion method is employed.
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Photonic crystal fiber (PCF)[1,2] is a new kind of fiber
whose cladding is composed of silica and periodic air
holes. To define its geometrical structure, two parame-
ters are needed, namely air hole diameter d and hole-to-
hole pitch Λ. By tuning these two parameters, PCFs
with different properties, such as broadband flatten
dispersion[3−6] and dispersion compensation to conven-
tional step index fiber (SIF)[7−10], can be obtained. How-
ever, the flexibility of the structure tuning also results in
the complexity of fiber design and makes the PCF design
a time consuming process[11−13]. In order to simplify
the dispersion design procedure, normalized dispersion
method[14] was proposed by Kim et al. Dispersion flat-
tened PCF and broadband dispersion compensating PCF
have been achieved by using this method[15−17]. Through
many numerical methods, the material dispersion of silica
in the form of Sellmeier’s equation can now be incorpo-
rated conveniently in the simulation. To employ the
normalized dispersion method, the total dispersion D of
PCFs must be seen as the sum of geometrical disper-
sion Dg and material dispersion Dm. However, the error
induced by this way of calculation may sometimes dete-
riorate the final dispersion curve of the designed PCFs.
So it is essential to find out the criterion with which the
error induced by separating D of PCFs into Dg and Dm

is acceptable.
In this letter, using an accurate full-vector method −

multi-pole method (MPM), the group velocity dispersion
(GVD) of PCFs with different structures is computed
by including material dispersion directly and indirectly
respectively, and the divergence between two ways of
dispersion calculation is analyzed. Using the absolute
error ∆D=5 ps/(km·nm) and relative error RD=5% as
acceptable error limits, the criteria when separating the
dispersion of PCFs into Dm and Dg is valid are provided.

We investigate the influences of the number of cladding

air hole layers on our simulation. For this purpose, a
lossy model with the hole-to-hole pitch Λ=2.3 µm, the
ratio of air hole diameter to hole-to-hole pitch d/Λ=0.2
is simulated, and the index of non-dispersive core is
assumed to be 1.45 for all the simulation below. We
call the dispersion calculated through incorporating the
material dispersion directly as Ddir, and the dispersion
calculated as the sum of geometrical and material com-
ponents as Dindir. Figure 1(a) shows Ddir and Dindir

of the PCFs with 4 or 12 layers of cladding air holes.
Figure 1(b) shows the absolute error ∆D=|Ddir−Dindir|
as a function of wavelength. From Fig. 1(b), it can
be seen that at short wavelength, the divergence ∆D is
very small, while after a certain divergence wavelength
λdiv, it begins to increase rapidly. The reason is that
at short wavelength, the relative fiber core diameter to
wavelength (2Λ−d)/λ is large compared with that at long
wavelength, and light is confined tightly in the core area.
The influence of geometrical structure on total dispersion
D is very weak. Dg can be seen as the perturbation of
D. With the increment of wavelength, light begins to
interact with the fiber cladding, and Dg is too strong to
be seen as perturbation. The wavelength λdiv at which
∆D begins to increasè is almost the same for PCFs with
4 and 12 layers of cladding air holes. Though the guid-
ing mechanism of this kind of PCF is called modified
total reflection, we must keep in mind that the guidance
is actually the result of multi-scattering of light at the
interface between air holes and silica. The extra rings
of air hole can ensure more light to be scattered back to
the core, however, it has no impact on when light begins
to “sense” the cladding, which is exclusively determined
by Λ and d. Thus, λdiv is determined mainly by the
core diameter 2Λ−d and relative air-hole diameter (also
called the air-filling fraction) d/Λ.

The values of Ddir and Dindir are calculated for
d/Λ=0.5, Λ=1.5, 2.0, 2.5 µm and for Λ=2.3 µm, d/Λ
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Fig. 1. (a) Dispersion D for PCFs with Λ=2.3 µm, d/Λ=0.2,
and 4 or 12 layers of cladding air holes, calculated by in-
corporating the material dispersion directly (solid line) and
indirectly (dashed line). The inset shows the longer wave-
length part. (b) Divergence ∆D as a function of wavelength
for 4 (solid line) and 12 (dashed line) layers of air holes.

Fig. 2. (a) Dispersion D for PCFs with d/Λ=0.5, Λ=1.5, 2.0,
2.5 µm, calculated by incorporating the material dispersion
directly and indirectly. (b) Divergence ∆D as a function of
wavelength for Λ=1.5, 2.0, and 2.5 µm. (c) Dispersion D for
PCFs with Λ=2.3 µm, d/Λ from 0.2 to 0.8 at a step of 0.2, cal-
culated by incorporating the material dispersion directly and
indirectly. (d) Divergence ∆D as a function of wavelength for
d/Λ=0.2, 0.4, 0.6, and 0.8.

from 0.2 to 0.8 at a step of 0.2, repectively. The re-
sults are shown in Fig. 2. The number of air hole
rings is chosen that all the PCFs simulated below have
reasonable low loss. As seen from Fig. 2(b), given a
certain d/Λ, a larger Λ means a larger core area, which
guarantees stronger confinement ability of light and re-
sults in a longer divergence wavelength λdiv. When
the hole-to-hole pitch Λ is set to be a constant, and

the air-filling fraction is changed, the situation becomes
more complicated (Fig. 2(d)). At a given Λ, the in-
crement of air-filling fraction results in the decrement
of core diameter and the increment of surface between
air holes and silica. The former factor goes against the
light confinement and the latter is of benefit to light
confinement. When the air-filling fraction is relatively
low, the influence of air-filling fraction’s increment is
stronger than that of the core diameter’s decrement.
While the air-filling fraction is larger, the influence of
core diameter’s decrement gets stronger. It balances,
even surpasses the impacts of air-filling fraction’s incre-
ment. This can be clearly seen from Fig. 2(d): the larger
the air-filling fraction is, the longer the λdiv is. However,
for large air-filling fraction, this trend is not so obvious.
Though not shown in Fig. 2(d), when the air-filling
fraction is large enough, the trend even reverses. The
value of ∆D for d/Λ=0.2 increases slowly after about
1.4 µm. A small air-filling fraction means a tiny index

Fig. 3. Structure parameter boundaries for absolute error
and relative error. ∆D is always smaller than 5 ps/(km·nm)
for d/Λ<0.24.

Fig. 4. (a) Precision of absolute error ∆D at d/Λ from 0.275
to 0.825 at a step of 0.5; (b) precision of relative error RD at
d/Λ from 0.225 to 0.825 at a step of 0.05.
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Table 1. Coefficients of Polynomial Fitting for ∆D
and RD Error Limits

For ∆D For RD For ∆D For RD

(d/Λ)9 21305.792 — (d/Λ)4 −169708.670 −278.915

(d/Λ)8 −113724.565 — (d/Λ)3 62032.366 181.668

(d/Λ)7 266054.875 — (d/Λ)2 −14326.743 −51.249

(d/Λ)6 −357695.003 −62.608 (d/Λ)1 1895.416 −1.947

(d/Λ)5 304277.745 209.629 (d/Λ)0 −106.840 5.170

Table 2. Examples of Employing the Error Limits to
PCFs with Varied Cladding Air Holes

Λ (µm) d1/Λ d2/Λ d3/Λ d4/Λ d5/Λ Maximal Error

Fiber 1* 1.96 0.80 0.8 0.65 0.65 0.65 4.9685

Fiber 2* 2.22 0.40 0.45 0.45 0.50 0.50 3.9746

Fiber 3** 1.91 0.70 0.75 0.80 0.85 — 4.62%

Fiber 4** 1.91 0.85 0.80 0.75 0.70 — 4.45%

di represents the ith inner cladding air hole. ∗ and ∗∗ rep-
resent the fibers that satisfy the absolute error and relative
error limits, respectively.

difference between core and cladding, which guarantees
the satisfaction of weakly guided convention. Also, the
zero-dispersion wavelength λzero of PCF is important for
some nonlinear applications. From Figs. 2(a) and (c), we
can see that for most situations, λzero is longer than λdiv.
Thus, separating total D into Dg and Dm hardly changes
the position of λzero. However, when λzero is shorter than
λdiv(see the inset of Fig. 1(a)), separating total D into
Dg and Dm will induce several tens nanometers shift of
λzero.

To employ the normalized dispersion method for PCF
design, it is necessary to evaluate the error induced by
separating D into Dg and Dm. From the analysis above,
we know that the longer the wavelength is, the larger the
absolute and relative errors are. Practically, considering
the current application and future band expansion in
an optical communication system (the upper wavelength
of L band is 1625 nm), we set 1700 nm as the upper
wavelength limit and ∆D=|Ddir−Dindir|=5 ps/(km·nm),
RD = ∆D/ |Ddir|=5% as absolute and relative error
limit to provide the criteria of when separating D into
Dg and Dm is acceptable. Firstly, the appropriate values
of hole to hole pitch Λ (the precision of Λ is 0.01 µm) are
found out for d/Λ from 0.2 to 0.85 at a step of 0.05. Due
to the small index difference between core and cladding,
for all the PCF structures with d/Λ less than 0.24, ∆D is
smaller than 5 ps/(km·nm). According to the definition
of RD, the value of RD will go meaninglessly high around
zero dispersion wavelength. However, the divergence is
actually very small. So, these meaningless values around
zero dispersion wavelength have been omitted. Then,
by polynomial fitting of the data points, the absolute
error and relative error limit boundaries are obtained, as
shown in Fig. 3 and Table 1. In Fig. 3, the structure
parameters’ space above the curves is the valid zone to
separate D into Dg and Dm for the wavelength shorter

than 1700 nm. The accuracies of the criteria are also
verified at d/Λ=0.275 to 0.825 for absolute error and
d/Λ=0.225 to 0.825 for relative error at a step of 0.05
(Fig. 4). The residual error is very small, which indicates
the validity of these two criteria. Also, these two criteria
can be extended to some PCFs with varied cladding air
holes only if the structure parameters are all in the upper
or lower part of Fig. 4(a). Table 2 gives some examples
of employing the criteria to PCFs with varied cladding
holes.

In conclusion, by taking 1700 nm as the wavelength
upper limit, 5 ps/(km·nm) and 5% as absolute error and
relative error limits, respectively, two criteria are pro-
vided about when separating D of PCFs into Dm and Dg

is valid. When using the normalized dispersion method
to design the dispersion properties, by individually or
combinedly using these two criteria, we believe that it
is adequate to evaluate the error of all the simulated
results.
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